Compositional properties of human cDNA libraries: Practical implications

Stilianos Arhondakis, Oliver Clay, Giorgio Bernardi*

Laboratory of Molecular Evolution, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy

Received 30 June 2006; revised 12 September 2006; accepted 19 September 2006

Available online 27 September 2006

Edited by Takashi Gojobori

Abstract The strikingly wide and bimodal gene distribution exhibited by the human genome has prompted us to study the correlations between EST-counts (expression levels) and base composition of genes, especially since existing data are contradictory. Here we investigate how cDNA library preparation affects the GC distributions of ESTs and/or genes found in the library, and address consequences for expression studies. We observe that strongly anomalous GC distributions often indicate experimental biases or deficits during their preparation. We propose the use of compositional distributions of raw ESTs from a cDNA library, and/or of the genes they represent, as a simple and effective tool for quality control.

Keywords: EST; GC; Expression level; GC biases; Sfi I

1. Introduction

ESTs are single strand reads of transcribed sequences generated from cDNA clones [1,2], and constitute a powerful tool for gene discovery or prediction in genomic studies [3–5]. They also provide an instrument for estimating transcripts’ levels and differences in gene expression between different conditions (tissues, pathological states). There are essentially two different types of libraries, non-normalized and normalized. The non-normalized libraries best reflect the population of mRNA sequences in a tissue or sample, giving better estimations of the transcripts’ expression profiles and of their differential expression among different conditions [6,7]. The redundancy of highly expressed transcripts and the need to recognize also rarely expressed ones led to the development of experimental procedures, such as normalization, which reduces the frequencies of mRNA species to a narrow range. Similarly, in subtractive hybridization a pool of sequences is removed in order to leave only sequences unique to that library [8,9]. Such procedures provide only an incomplete picture of which genes are expressed at highest levels, i.e., they do not allow detailed quantitative analysis.

Our laboratory has demonstrated (i) that the density of human genes is very low in the isochore families L1, L2 and H1, which represent about 85% of the human genome, and very high in isochore families H2 and H3, which correspond to the remaining 15%; and (ii) that there are compositional correlations between GC1, GC2 and GC3 (the GC levels of positions 1, 2 and 3 of codons) and the GC levels of flanking sequences (see [10] for a review). Therefore, it was proposed that the H3 isochore family presumably has the highest level of transcription because of its very high concentration of genes, especially housekeeping genes [11]. This situation raises the question of the existence of correlations between expression levels and base composition.

In the last years, ESTs, SAGE (serial analysis of gene expression [12]) and microarrays have been used to quantify the effects of base composition on genes’ expression. Estimates of the correlations between genes’ expression level and base composition have, however, been often characterized by quantitative and even qualitative discordances. In an early study on mammalian expression and GC content [13], expression levels of genes were estimated from a cDNA array constructed from amygdala of Rattus norvegicus, and from a SAGE library of kidney from Mus musculus. Despite a technical variability, resulting from the fact that different samples were taken from different species and analyzed using different methods, the authors showed consistently positive correlations between the genes’ expression and their base composition. A subsequent publication on gene expression [14] concluded that the human transcriptome map (HTM) contains domains called RIDGES (regions of increased gene expression) that contain several genes with high expression levels, as assessed using the SAGE technique [15]. These authors were apparently not aware of our investigations because they could have found that RIDGES essentially correspond to the GC-richest, gene-richest isochores.

A first result from our laboratory, providing further evidence of a higher transcriptional level in GC-rich mammalian genes, was obtained using human EST data [16]. In this study it was shown that averaged expression level increases steadily for three compositional classes representing GC-poor, medium and rich isochores, with statistically significant differences. This basic result was at variance with some other studies using EST data [17–19], where even a weak negative correlation was reported. The authors of those studies [17] correctly suggested that controversial results obtained using EST data might be related to limitations of ESTs for inferring quantitative expression.

In addition to data from sequencing-based techniques (EST, SAGE), high density oligonucleotide array (Affymetrix) data from a study of the human and mouse transcriptomes [20,21] have been widely used in a series of recent articles to examine relationships between expression levels and base composition...
[17,22–24], again giving sometimes quantitatively discordant results, even within the same technology.

Despite quantitative variation among studies, the results relating gene expression and base composition generally support the existence of a higher expression of GC-rich genes compared to GC-poor genes. The remaining discordance among EST studies [16–19] motivated us to examine the expression levels of human genes and their base composition in more detail, using data collected from a variety of tissues and by different laboratories. In particular, we examined the differences among EST/cDNA libraries' compositional properties, the reasons for those differences, and the way in which they might affect conclusions concerning base composition and expression.

We observed that EST-based estimates of genes' expression levels were often affected by strong experimental variability. The general view that transcripts of GC-rich genes tend to be more abundant than those of GC-poor genes was supported after the experimentally unreliable libraries were identified and removed. Our observations also led us to the conclusion that compositional histograms of the GC levels of ESTs, and/or of the GC3 (third codon position GC) levels of the genes they represent, can be used to assess the quality of cDNA libraries and to recognize experimental deficits during their construction.

2. Materials and methods

In this study we analyzed ESTs as described in a recent publication of our laboratory [16]. The EST data representing different cDNA libraries were retrieved from the TIGR database, human gene index (HGI) release 16.0 (February 22, 2005; [25]). We selected cDNA libraries from the TIGR database (HGI), including only non-normalized libraries [18,19,26,27]. Indeed, it is known that normalized libraries tend to under-represent the clones of highly expressed genes, and such EST data can therefore lead to systematic underestimates of the high expression levels, i.e., only non-normalized libraries allow a more detailed reliable quantification of the detected highly expressed genes. We retained only libraries from normal adults, with one exception, fetal brain. Our final set consisted of 28 non-normalized libraries representing various tissues or samples (for experimental details see: http://cgap.nci.nih.gov/, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene, http://mops.sanger.ac.uk/ and Ref. [28]).

Each library is labelled by a catalogue number or library identifier (CAT#; those used are listed in the Supplementary Table). A cDNA library is generally assumed to be a random sample of the mRNA population for the tissue under consideration, so the number of ESTs from a given gene should ideally reflect the number of transcripts present per cell. To compute how many ESTs can be associated to a given cDNA library and a unique tissue, the organism-wide expression level (IEL) for these libraries (log of E; see Section 2) was estimated for the 5742 genes that were found to be expressed in one or more of the 17 tissues, and plotted against their GC3. The weak positive correlation observed was significant ($R = 0.03, P < 0.01$; data not shown), but did not yet suggest any particularly strong relation for these averaged EST data, which appeared to follow a trend of weak relations reported in the past [16], in which higher GC3 levels are associated with slightly higher average expression levels.

This study was then extended to include 11 more cDNA libraries, and EST data were now also investigated independently for each cDNA library. When we plotted our IEL, i.e., the log of the A value (library-specific expression, as described in Section 2), against the GC3 of the genes, for each library, we observed different and often stronger positive correlations than when the same data were pooled (Supplementary Table). Such overall discrepancies between organism-wide and sample-specific results are partly expected, because pooling data from different libraries (sources) leads to an increase of sample quantity yet introduces noise into the IELs [24,31,32]. Among the 28 non-normalized libraries that we independently analyzed, we found that 9 libraries were characterized by significant positive correlations between IEL and GC3, 2 libraries by significant negative correlations, and the remaining 17 libraries by no significant correlations (Supplementary Table). A clear dependence of the significant correlations' signs and strengths on base composition (see below) renders it unlikely that they had arisen just by chance.

This initial analysis alone suggested, but did not yet demonstrate, a persisting tendency, even if many more libraries had significant positive than significant negative correlations. The pronounced variability among the correlations and GC3 means prompted us to carefully screen, as a next step, the compositional GC3 distributions of the identified genes and the GC distributions of the raw EST sequences in each cDNA library. We found that the distributions were indeed often very different among libraries, also where the libraries represented the same tissue. Many of them were characterized by GC-poor or...
GC-rich biases that were visible as uniformly skewed histograms. Some examples are shown in Fig. 1.

3.2. Detecting effects of specific restriction enzymes on GC distributions

As mentioned above, only two libraries, from testis and skeletal muscle (#6JA; R = -0.07, P < 0.02; #9FS; R = -0.12, P < 0.001), showed significant negative correlations between IEL and GC3 of the genes. Both were characterized by a GC poor bias, as is shown in Fig. 1 for the testis library, and we also noticed that both of these libraries had been constructed using only the specific restriction enzyme Sfi I. This enzyme has a very GC-rich recognition sequence (ggccnnnn), and therefore acts preferentially in GC-rich regions. The same enzyme, Sfi I, was also used in kidney, lung, liver and placenta libraries (#6LH; #6LI; #6QD; #6LJ; see Supplementary Table), all of which were characterized by not significant correlations that tend to be negative and by GC-poor biases. The mean GC3 levels in those cDNA libraries where Sfi I was used were much lower than in the other libraries, even where they were constructed from the same tissues (see Supplementary Table). Other libraries were also characterized by different degrees of GC bias, GC-poor or GC-rich, although this remaining variability could not be traced to any particular restriction enzyme other than Sfi I. Fig. 1 shows two libraries from a single tissue (bone) and one from skeletal muscle, with their different correlations between the IEL and GC3 (bone_a, LD97; bone_b, #A5A; skeletal muscle, LA1; see Supplementary Table). The two libraries with significant positive correlations are strongly biased toward GC rich genes (bone_b, skeletal muscle). The strong compositional difference observed between the two bone libraries cannot be justified by any biological variability, nor by clustering or matching errors, since it persists also for the raw EST sequences extracted from the TIGR database. In this case the difference may not be as easily explained as for the Sfi I libraries, but presumably it can also be traced to experimental reasons, since GC-poor regions from the cDNA were apparently eliminated during the preparation of the severely biased bone library (bone_b).

3.3. Specific restriction enzyme effects within a single tissue (prostate)

In order to track and understand the compositional effects of the restriction enzyme Sfi I, we enlarged our data set for a single tissue. For this particular analysis we included also libraries from pathological states, as well as normalized libraries. We selected six libraries from the same tissue, prostate, of which two libraries had been constructed using the Sfi I enzyme (#6LF, #6JB). The selection criterion was a high and similar number of EST sequences (>7000).

First, for each of these prostate libraries we estimated the mean GC, using raw EST sequences (i.e., not the full gene sequences that they represent). We found that the two Sfi I libraries had lower means (#6LF, 45.5; #6JB, 45.9) than three of the four libraries constructed using other enzymes (#8C9, 49.5; #DPH, 50.3; #8K2, 56.3; the one exception was LE55, 45.8). GC means of the tentative human consensus (THC) sequences of each library were then evaluated. The lower GC means and strong asymmetries in the GC distributions corresponding to the Sfi I libraries were again very noticeable. Fig. 2 shows the results obtained for a Sfi I library (#6JB) having 3826 THCs and a GC mean of 45.3%, and a library obtained without Sfi I (#DPH), having 3553 THCs and a mean of 50.0% GC.

In order to exclude the possibility of database-related artefacts related to EST “cleaning” and/or assembly methods (THCs) that might have been used by a particular database, we also looked for the same libraries in databases other than TIGR, but found no indication of database-specific biases. In particular, we randomly selected libraries from TIGR and cross-checked the raw EST sequences by re-estimating GC means for corresponding EST sets provided from a different and well-known database, UniGene-dbEST (http://www.ncbi.nlm.nih.gov/UniGene/lbrowse2.cgi). For example, the two prostate libraries shown in Fig. 2 maintained, when retrieved from dbEST instead of TIGR, a similar mean GC whereas the Sfi I library gave a slightly higher mean than in TIGR (library #DPH gave 50.2% for dbEST id 14129, as in TIGR; library #6JB gave 46.6% for dbEST id 6763, versus 45.9% in TIGR). The results did not reveal any notable differences even if the number of ESTs reported for the same library often varied between these two databases.
Summarizing, the GC means of raw ESTs, from the 6 prostate libraries and the 28 other libraries, exhibited high intra-tissue variability, although this was apparently created largely by \textit{Sfi I} use. More precisely, the \textit{Sfi I} libraries were constantly found to have a GC mean below 46%, whereas the full range extended up to about 56% GC (Fig. 3), underlining the contribution of experimental GC effects. Moreover, GC effects related to another restriction enzyme, \textit{Not I} (with the GC-rich recognition site gc\textsubscript{5}ggccgc), have been reported in a recent study of full length cDNA sequences in cow [33].

Our results and observations make it clear that EST data should, and can, be carefully pre-filtered to check for quality, for example by viewing the libraries’ GC\textsubscript{3} distributions before applying them to further analyses involving IELs, expression breadth (number of tissues in which a gene is expressed) and/or base composition. The examples presented above show that careful preliminary screening using compositional distributions of the raw ESTs or of the expressed genes can be a well-suited tool for detecting experimental biases or deficits. By such screening one can significantly increase the reliability and compositional representativity of EST data, despite their persisting and well-known limitations.

3.4. Inter-technological variability of correlations and transcriptome composition

Despite the counterexamples reported above, there is a clearly visible trend of EST data to produce positive correlations and “avoid” negative ones, and the gene sets with mean GC\textsubscript{3} levels below 55% were almost all from \textit{Sfi I} libraries (Fig. 4 and Supplementary Table). Furthermore, the libraries with GC\textsubscript{3} means above 55% yielded nine significant positive correlations (IEL vs GC\textsubscript{3}) and no significantly negative ones. After excluding the \textit{Sfi I} libraries, the lower threshold for the libraries’ mean GC\textsubscript{3} coincides remarkably well with a lower bound for transcriptomes that we inferred from Affymetrix arrays (from both array generations, U95Av2 and U133A; S. Arhondakis, thesis in preparation). More precisely, we analyzed data from 201 arrays (replicates) spanning a wide range of tissues [20,21,34,35]. Of these 201 replicates, 187 (93%) showed positive correlations between genes’ expression level and GC\textsubscript{3}, while only 14 showed negative correlations (for significant correlations the counts were 184 and 9, respectively). These parallel findings reinforce a lower compositional limit (mean GC\textsubscript{3} \approx 55%) of the transcriptome, which seems to be independent of the technology used, but also a clear, platform-independent tendency of positive correlations.
Fig. 4 reports a comparison among results from ESTs, short-oligo (Affymetrix) microarrays (both described above), and massive parallel signature sequencing (MPSS; [36]) technique. The mean GC3 and the correlations between expression level (Affymetrix: log of Signal; MPSS: log of tpm; ESTs: log of A) and GC3 are shown for output data sets from these three technologies. Massively parallel signature sequencing (MPSS) is represented here by two samples from cancer cell lines (LNCaP and C4-2; [37]). LNCaP has a GC3 mean just below 55% ($\bar{C}_{GC} = 54\%$), while C4-2 is just above this threshold ($\bar{C}_{GC} = 56\%$), and correspondingly they show significant negative ($R = -0.11$) and not significant but marginally positive ($R = 0.016$) correlations, respectively. Their low GC3 means and weak correlation coefficients may in part be related to a GC-poor bias that is visible in these data sets, especially for the LNCaP cell line (see also Figure S1 of Supplementary Material 1), or to the fact that cancer cell lines were used. It is well known that cell lines may undergo de novo methylation processes and alteration of chromatin structure [38], and genes’ usual expression patterns often change when cells are kept ex vivo [39,40]. More data will be needed to faithfully represent the MPSS technique on the diagram, especially because only cultured cell lines were analyzed for this technique, in contrast to most other data represented in the scatterplot (although the Affymetrix data contain a few arrays for immune/peripheral blood cells, which may also give anomalous results cf. Ref. [35]). Details on the analysis of the two MPSS data sets and discussions are given in Supplementary Material 1.

4. Discussion

The detailed analyses presented here show that indicative expression levels of genes, as assessed by ESTs, are often affected by strong variability of cDNA libraries related to experimental protocols. This observation should in part explain the differences among the correlations that were estimated using EST data in some recent studies [16–19] and even among those obtained using different techniques within a same laboratory [17]. Technology-specific or experimental limitations involving or affecting GC may also explain the generally low concordance among expression levels reported by different technologies ([41,36]; see also Fig. 4). Indeed, GC level can be an important key for identifying methodological limitations and discrepancies [42].

GC biases related to experimental procedures, well known for the SAGE technique ([43], cf. also [44]), have been detected also for other technologies that monitor the transcriptome ([45,46] and the present work). Such biases can affect detection sensitivity, expression levels, and consequently also correlations with base composition.

The analysis and results reported here, and independent results that we obtained via high density oligonucleotide arrays (S. Arhondakis, thesis in preparation), generally point towards a persistence of positive correlations. In the case of Affymetrix, probes’ GC-related artefacts may or may not have strengthened the correlations we observed, while in the case of ESTs the use of some restriction enzymes can weaken them, as we have seen here. Different inter- and intra-technological limitations of current methods for monitoring expression levels do not yet, however, allow faithful quantitative estimates of correlations between expression levels and GC, so reported values must be interpreted cautiously.

The specific restriction enzyme GC effects that we report for cDNA libraries were obtained by using, as a reference, the well-known and established bimodal, wide GC3 distribution of human genes [42,47,48]. Such a wide compositional distribution may create technical problems, since experimental condi-
tions that are optimal for GC-poor genes may not be optimal for the GC-richest genes and vice versa. The findings reported here allow us to propose the use of compositional distributions of ESTs, or of the genes that they represent, as a simple yet effective tool for quickly visualizing and monitoring cDNA libraries, and for detecting experimental biases or flaws during their experimental preparation.

Acknowledgments: We thank Fernando Alvarez (Facultad de Ciencias, Uruguay) for constructive criticism and discussions, and our colleagues Fabio Auletta and Giuseppe Torelli for excellent bioinformatic support and for automating analyses. We also thank Dr. Margherita Branno (Laboratory of Molecular Biology, SZN) for helpful information on experimental protocols for cDNA libraries.

Appendix A. Supplementary material

References

