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BIOLOGICAL SYSTEMS

Density Gradient Utracentrifugation
and Whole Genome Sequences:
Fine-tuning the Correspondence

Abstract Since its introduction

in the 1950’s, analytical ultracen-
trifugation (AUC) of DNA in CsCl
and other salt density gradients at
sedimentation equilibrium has re-
mained an elegant way to gain insight
into the variation of base composi-
tion (GC, guanine + cytosine %)
among and within animal and plant
chromosomes, and into functional
correlates of GC. Absorbance profiles
of routine preparations of DNA in
CsCl are essentially GC histograms
of fixed-length sequence fragments
(= 15-100kb). This correspon-
dence has been amply illustrated by
genome sequences obtained over
the past 5 years. Both AUC and
sequencing have now generated
large amounts of data that can be
jointly mined. The dialogue between
these two approaches should render
tractable some tenacious problems

of CsCl profile analysis, such as

the correct treatment of concentra-
tion dependence for heterogeneous
DNA. We focus on how absorbance
profiles of a species” DNA vary

as one changes the scale of one’s
observation (molecular weight), and
dissect this scale-dependence into
the contributions from its two main
sources (diffusion, sequence effects).
Our understanding of heterogencous
DNA in CsCl gradients can profit
from the comparison of results from
AUC and whole-genome sequenc-
ing, and the insights gained should
prompt more strategic AUC analyses
of DNA.

Keywords Analytical ultracentrifu-
gation - Sedimentation equilibrium -
Base composition - Evolution -
Long-range correlations

Introduction

The base composition of a DNA molecule is primarily its
GC level, the molar ratio of GC (guanine-cytosine) base
pairs in the DNA. If one considers just one strand, GC is
the percentage of nucleotides that are G or C, and not A or
T. This is a most fundamental property of DNA. Numer-
ous functional and evolutionary correlates of its variation
along chromosomes, in taxa ranging from bacteria to hu-
man, are now known [1].

CsCl gradient density ultracentrifugation of DNA was
introduced in 1957. Its principle is well summarized in
the original paper [2]: “A solution of a low-molecular

weight solute [e.g., CsCl] is centrifuged until equilibrium
is closely approached, [resulting] in a continuously in-
creasing density along the direction of centrifugal force.
Consider the distribution of a small amount of a single
macromolecular species [e.g., DNA] in this density gradi-
ent. The initial concentration of the low-molecular-weight
solute, the centrifugal field strength, and the length of the
liquid column may be chosen so that the range of dens-
ity at equilibrium encompasses the [buoyant] density of
the macromolecular material. The centrifugal field tends
to drive the macromolecules info the region where the sum
of the forces acting on a given molecule is zero. (The
[buoyant] density of the macromolecular material is here
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defined as the density of the solution in this region.) This
concentrating tendency is opposed by Brownian motion,
with the result that at equilibrium the macromolecules are
distributed with respect to concentration in a band of width
inversely related to their molecular weight.”

Soon after the introduction of this technique, which
was conceived with labelling in mind (see [3] for a histor-
ical account), it was discovered that there is an important,
simple and accurate empirical link between analytical ul-
tracentrifugation (AUC) and GC [4-6]. This link has been
used routinely since then, yet it still awaits a full quan-
titative, physicochemical explanation. In a CsCl density
gradient, at sedimentation equilibrium, the GC of a macro-
molecule of DNA is linearly related to its (time-averaged)
buoyant density. The buoyant density of that DNA is, in
turn, practically a linear function of its radial position:
the density gradient is effectively linear over the distances
from the ultracentrifuge axis that are of interest. The po-
sitional distribution of the DNA macromolecules in a gra-
dient is scanned by an analytical ultracentrifuge and re-
ported as an absorbance profile. A DNA sample consisting
of molecules or fragments that have different base com-
positions (GC) will have, at sedimentation equilibrium,
a profile of finite width. To a good approximation, valid for
most species’ DNA and especially if the molecular weight
is high, this equilibrium profile is just the GC distribution
of the molecules.

Corrections that improve the accuracy of the match
are based on tractable, well-known effects experienced by
macromolecules in solution. Indeed, there are basically
three components: DNA, salt, and water, although DNA
macromolecules can have different sequences that make
them behave in solution, or interact, in different ways by
adopting anomalous configurations or aggregating. The
problem is not so much in understanding the individual ef-
fects involved, but in assessing their relative importance
and cross-influencing, which encumbers a modular treat-
ment. Subtle but persistent impediments to perfect match-
ing may involve DNA concentration effects and/or aggre-
gation, anomalous sedimentation of repetitive DNA, and
methylation.

Molecular weight polydispersity, where present, can
add further complexity, although in many situations it is
unproblematic: current DNA extraction protocols typically
produce narrow molecular weight distributions, so in cal-
culations one can simply use the mean.

GC and its contrasts are of interest because they cor-
respond to functionally and evolutionarily telling genome
properties. For example, in mammals and birds the GC-
richest regions of a genome have the highest gene densities
and expression levels, the most interior locations in the nu-
cleus at interphase and the earliest replication in S-phase,
preferentially open chromatin and short-intron genes, and
more frequent and longer CpG islands (reviewed in [1]).

The analytical ultracentrifuge is likely to soon become
more refined, precise and versatile (see, e.g., [7}), and

whole-genome sequencing should become cheaper and
faster (see [8-10]). Such technical advances promise to al-
low more accurate and varied comparisons between GC
distributions of genomic DNA sequences and their CsCl
absorbance profiles. [t now seems, therefore, the right time
to address remaining open problems in our understand-
ing of how heterogeneous DNA behaves while it is being
ultracentrifuged in CsCl gradients. In this paper, we use
results from density gradient AUC and entirely sequenced
genomes to specify how sequences and absorbance pro-
files should dovetail. Proper dovetailing permits consis-
tency checks that can tell us if our ideas about profile
formation are correct.

Experimental

At sedimentation equilibrium in a CsCl density gradient,
the GC level of a molecule or fragment of double-stranded
DNA is related, with a few exceptions that are listed below,
to its (time-averaged) buoyant density p in the gradient [4—
6]. The linear equation that relates these two quantities
is [11]
p—1.660gcm™> )
0.098

Because there are exceptions to this rule, buoyant dens-
ity (also called “density” in early publications), rather than
GC, is often chosen as the quantity of interest in AUC
studies. GC is, however, the ultimate object of our investi-
gations.

Buoyant density in CsCl is, in turn, a simple function of
the distance r of the molecule from the axis of an analytical
ultracentrifuge [12],

GC = x 100% .

2

Here, pm and ry, are, respectively, the buoyant density in
CsCl and radial position of a suitable marker, such as bac-
teriophage 2C (which has a very high ppn, 1.742 g/cm?
because of its modified bases). w is the angular speed and
Kk is a constant that depends on the details of the ultracen-
trifuge cell and the rotor (x ~ 4.2 x 10~!° for Beckman
models E and XL-A). Since the differences in radial pos-
ition are very small compared to the distances from the
axis, we can write r% — rﬁ1 ~2 2rm(r — rm), 1.€., the nonlin-
earity in Eq. 2 is negligible, and the gradient is essentially
linear.

For a generic, high molecular weight DNA sample
(e.g., 50-100 kilobases or kb) in which we can neglect dif-
fusion of the molecules or fragments, their radial distribu-
tion in the CsCl gradient is, after a linear calibration, just
their GC distribution. At lower molecular weights, diffu-
sion visibly broadens the radial distribution. Indeed, small
DNA molecules or fragments will continue to diffuse ap-
preciably around their expected positions in the gradient
at sedimentation equilibrium, although the average number
of molecules or fragments at any given position will not

L= Pm +/(a)2(r2 — rr2n) .
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change, i.c., at a macroscopic scale there will be no more
net motion.

The absorbance profile that reports the radial distribu-
tion thus corresponds, via Egs. 1 and 2, to the GC distri-
bution of the DNA molecules, if their molecular weight is
high and they do not contain satellite or modified DNA.
For this correspondence to hold, however, certain stan-
dard experimental conditions must be met (see, e.g., [13]
and [14] for partial lists). Among the conditions, we men-
tion that the average concentration should be neither too
low, because the absorbance of DNA is then easily con-
founded with a possibly irregular “baseline” that may in-
clude minor contaminants, nor too high, because the re-
sponse is no longer linear when DNA crowds excessively
at the band center. If CsCl solution is excluded from the
region and/or light is blocked, this can locally deform the
otherwise linear gradient and/or flatten the profile. Ab-
sorbances are measured at 260 nm and the standard speed
is 44 000 rpm.

The Shaping of the DNA Absorbance Profile:
Physicochemical Contributions

We begin with a historical absorbance profile: the first
view of a mammalian genome’s GC distribution ever pub-
lished. Figure 1 shows the positional distribution of frag-
ments of DNA from a calf’s thymus DNA in a CsCl gra-
dient, at sedimentation equilibrium, reproduced from the
original paper that introduced density gradient ultracen-
trifugation [2]. The speed of the rotor (44700 rpm) was
similar to those used in routine CsCl analyses today; only
the molecular weight (presumably around 5 kb) was not as
high. Such equilibrium profiles can be obtained after about
24 hours. An introduction to the method’s physical founda-
tions can be found in the book by van Holde et al. [15].

Scale: ——Imm—

DNA CONCENTRATION

o

DISTANCE FROM ROTOR CENTER —

Fig.1 Equilibrium profile of the cow genome in CsCl, obtained in
1957 when CsCl gradient AUC was introduced. Molecular weight is
presumably less than or around 5 kb, other conditions are standard.
Reproduced with permission from Meselson et al. [2]

The caption accompanying the 1957 plot concluded
with the sentence: “The skewness in the resultant band in-
dicates heterogeneity in effective density”. Such marked
heterogeneity of the effective density, or buoyant density,
is generally pronounced in mammals and birds, and results
largely from GC heterogeneity among the chromosomal
fragments represented in the sample. In the special case of
cow, the profile heterogeneity is further exaggerated by the
very high percentage (= 25%) of highly repetitive satellite
DNA in the bovine genome, as was discovered later [16].

In October 2004, the first draft of the cow genome se-
quence was placed in the public domain (http://genome.
gov/12512874). The full assembly of the large scaffolds
and the publication describing the sequence have not yet
appeared. If one allows for some inaccuracies due to gaps,
the GC levels of the sequenced Hereford cow’s 5 kb seg-
ments (or, rather, of the presently available scaffolds’ seg-
ments) can be fetched from an annotation database that
now exists for this genome and plotted as a histogram, as
is shown in Fig. 2. In this way we can again see the cow
genome’s GC distribution, 47 years and some $53 million
after the scan of Fig. 1.

We now go into technical detail. When one overlays
(after converting to GC units) an experimental curve such
as the one in Fig. 1, which represents collections of simi-
larly sized fragments of a genome, by its sequence-derived
counterpart, such as the histogram in Fig. 2, one finds
that the absorbance profile is wider than the histogram.
The two main reasons for this difference in cow are well
known: highly repetitive DNA [16], and diffusion.

Highly repetitive DNA 1is present only in modest
amounts in sequence scaffolds: heterochromatic regions
such as centromeres are not (and will not soon be) tar-

DNA AMOUNT (SEGMENTS)

20 30 40 50 60 70

GC LEVEL OF 5 KB SEQUENCE SEGMENTS, %

Fig.2 GC histogram of 5 kb segments of the recently sequenced
cow genome. The draft sequence’s GC levels were obtained from
the gcSbase.txt table of the UCSC annotation database for cow,
http://genome.ucsc.edu (ratio sumData/validCount). Bins of 1%
GC were used
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geted for sequencing, since they rarely contain genes and
are more difficult to sequence. Where scaffolds do con-
tain such DNA, the sequences report the correct GC. In
an ultracentrifuged sample, on the other hand, a fair num-
ber of the molecules will consist of (largely unsequenced)
highly repetitive DNA, which can extend over long tracts
of unstable length, expanding or contracting even from one
generation to the next as a result of mechanisms such as
slippage and out-of-register homologous recombination.
Such satellite DNA will often (but not always) appear as
visible peaks or bumps within or next to the main-band
profile: since the many molecules of a particular satellite
are identical or almost identical, their GC level will be
overrepresented in the absorbance profile. The amount of
a particular satellite in a genome, i.¢., the height of its peak
or bump in the profile, will often change quickly over evo-
lutionary timescales, sometimes differing visibly within
genera (as in kangaroo rats [17]). Some of the repetitive
satellite DNA may also band anomalously, i.e., be found at
another position in the gradient than expected on the basis
of its GC (as in guinea pig [18]). Such abnormal band-
ing occurs presumably because the repetitiveness (and/or
methylation) of the satellite fragments alters their buoyant
density.

Diffusion is an effect that is irrelevant to GC distribu-
tions obtained from sequences, whereas in a CsCl gradi-
ent the DNA molecules undergo random Brownian mo-
tion around their expected equilibrium positions, and thus
broaden the absorbance profile. When molecules or frag-
ments are identical, diffusion broadens the profile in in-
verse square proportion to the fragments’ lengths.

To approach an understanding of how diffusion acts on
DNA 1in real situations, we begin by considering the natu-
ral DNA that gives the simplest CsCl profile: a preparation
of intact, identical copies of a bacteriophage such as phage
lambda. Such a sample of lambda DNA will have no inter-
molecular GC heterogeneity (the molecules will typically
all have the same sequence, gb:lamcg), and no polydis-
persity in molecular weight (M = 48.5 kb). Because of the
simplicity of the scenario they permit, phages have been
often used as models for studying macromolecules’ behav-
ior in density gradients. The absorbance profile of such
a homogeneous, monodisperse DNA sample will report
a Gaussian distribution of molecules’ positions. The width
(standard deviation) of that Gaussian profile will depend
on diffusion, but also to some extent on the amount of
DNA that was loaded into the ultracentrifuge cell: virial
effects will cause an additional broadening of the profile
when the overall DNA concentration is high. The virial
effect is absent, by definition, at infinite dilution, and in
phages it has been observed to increase exponentially with
increasing concentration. We can therefore summarize the
situation for homogeneous DNA samples by saying that
their absorbance profiles are well described by a Gaus-
sian distribution with standard deviation o = /a/Me?5¢,
where M is the molecular weight, ¢ is a measure of over-

all concentration or of the amount of DNA loaded, such
as the maximum absorbance (optical density), a is a factor
that takes solvation into account, and B can depend on the
species analyzed [19, 20].

Vertebrate genomes or chromosomes are much larger
than those of intact phages, and are therefore represented
only by their fragments in DNA samples: during the
experimental preparation of DNA, a very large macro-
molecule such as a cow chromosome is inevitably sheared
into fragments. Where a genome is heterogeneous in GC,
there will then be intermolecular GC heterogeneity in the
sample, and thus broad profiles, which will be further
broadened by diffusion and/or satellites. Local narrow-
ing can also occur: if some but not all DNA aggregates
during the approach to equilibrium, the aggregating DNA
will attain a higher molecular weight than the rest of the
DNA, so an effective polydispersity can develop, with the
aggregating DNA forming a more highly peaked “subpro-
file” (see [21] for an example in mouse). Several other
factors can also play a role in shaping or shifting profiles,
such as DNA methylation, electric effects, pressure effects,
local deformations of the CsCl gradient where DNA is
crowded, or light bending by the gradient. Most of these
factors hardly distort the relatively broad profiles of verte-
brates.

At infinite dilution, there is no concentration depen-
dence, and the total profile variance of a heterogeneous
sample is then the GC distribution’s variance plus the dif-
fusion variance ogiffusion =a/M [20]. In other words, we
have a convolution of an (often non-Gaussian) distribution
representing the GC heterogeneity and a Gaussian distri-
bution of unit area (also called a filter, kernel, or point
spread function) representing the diffusion broadening.
Once the constant @ is known, the standard deviation of
the GC distribution can be calculated from the absorbance
profile and an estimate of the sample’s molecular weight
M. With some inevitable numerical inaccuracies, we can
then even extract the full GC distribution by deconvolving,
i.e., “peeling off” the Gaussian of unit area that represents
the diffusion. In real situations, dilutions are finite, and
when we wish to take concentration effects into account
we can no longer carry over the solution from the homoge-
neous case: virial effects and possible aggregation can act
simultaneously but in opposite directions (broadening or
narrowing the profile) and in different parts of the profile
(tails or center).

The remarks we have made so far pertain to ways in
which DNA macromolecules’ behavior in a density gra-
dient shape their absorbance profile. The shaping entails
a molecular weight dependence that is especially strong
for small fragments, but becomes weak or negligible for
long fragments. It has been understood in its rudiments for
over three decades. This rudimentary understanding often
permits accurate extraction of the underlying GC distri-
bution. In most cases where the entire genome sequence
is known, one finds that by neglecting concentration de-
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pendence, and by assuming a Gaussian point spread func-
tion whose width is inversely related to the square root of
the fragments’ mean length, one obtains estimates of the
underlying GC distribution that differ only very slightly
from the sequence-derived GC distribution (cf. [14]). In
some species or conditions, however, the profile and/or
its concentration dependence depart visibly from expecta-
tions.

Another contribution to the profile’s final shape is of
practical as well as molecular-biological and evolution-
ary interest: the GC distribution, which entails a molecular
weight dependence that is intrinsic to the genome under
study.

The Shaping of the DNA Absorbance Profile:
GC Contributions

At the sequence level, molecular weight corresponds to
fragment length or, if one views the fragment as part of
a chromosome sequence, to segment or window length.
Thus a GC distribution that has been deduced from an
absorbance profile will correspond to a sequence-derived
GC histogram. If the sample consists of heterogeneous but
monodisperse fragments of chromosomal DNA, the his-
togram will be a histogram of fixed-length segments or
windows along the chromosome(s).

Sequence heterogeneity can be investigated experimen-
tally by CsCl gradient ultracentrifugation over two orders
of magnitude (=~ 3-300kb), using a simple principle: in-
tramolecular heterogeneity becomes intermolecular het-
erogeneity when one regards smaller molecules or frag-
ments.

Thus, much of the intragenomic GC heterogeneity in
mammals was well understood already in the 1970’s, even
though no chromosomal regions (and only a handful of
genes) had known sequences at that time. The investiga-
tions using AUC led to the following picture. Sequences of
mammalian DNA (GC and AT) do not resemble runs of in-
dependent coin tosses (heads and tails), but have a remark-
able organization. Within relatively short (kb) regions, GC
levels are already long-range correlated. At larger scales
(> 100 kb), GC levels are organized in a mosaic as one
travels along a chromosome, in which GC-rich segments
alternate with GC-poorer segments. The pieces of the mo-
saic, which are much more homogeneous in GC than the
whole genome and persist in this relative homogeneity
over long distances, from ~ 300 kb to several megabases,
are called isochores ([21-23]; their discovery, functional
correlates and evolution are reviewed in [1]).

Intragenomic heterogeneity at a given scale, such as
10 or 70 kb, can be quantified by the width of the CsCl
absorbance profile or, more precisely, by the standard de-
viation of its underlying GC distribution. Thus, plotting
the width (standard deviation) of a genome’s GC distribu-
tions versus the relevant segment size (molecular weight)

gives an immediate visual impression of that genome’s GC
heterogeneity at all scales. Plots of this type are shown in
Fig. 3, on double-logarithmic scales. The slope of the log-
log plot for human is around —0.15 (already much less
steep than for an uncorrelated sequence) at low molecu-
lar weights < 10 kb, and then gradually flattens out, finally
reaching a horizontal plateau that remains constant for
molecular weights greater than about 70—-100 kb. In other
words, the narrowing of a mammalian CsCl profile, as
molecular weights are increased, slows down and reaches
a constant width from about 70-100 kb onwards. In fact, at
100 kb a mammalian profile (and not just its standard devi-
ation) is practically indistinguishable from one at 300 kb.
This observation was first made using AUC [21] and was
recently confirmed with genome sequences [24]. The ori-
ginal observation was a key element in deducing the exis-
tence of isochores [21], since it is exactly what one would
expect if chromosomes are organized into long regions
>> 300 kb within which heterogeneity is remarkably low
compared to the genome-wide heterogeneity, and it is very
far from what one would expect if no similar large-scale
structure were present.

-
o
i
—

cold-biooded
vertebrates,

invertebrates

.
random DNA
sequences .

STANDARD DEVIATION OF GC, %
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DNA SEGMENT SIZE, KB

Fig.3 GC standard deviations of entirely sequenced animals
at different molecular weights. Vertebrates are shown by solid
lines, from top to bottom: dog, human, chicken (square markers),
Tetraodon pufferfish, zebrafish (circular markers). Protostomes
(dashed lines and circular markers, from top to bottom): Anophe-
les gambiae mosquito, Drosophila yakuba fly, and Caenorhabditis
elegans nematode worm. Sequences were retrieved from the UCSC
genome browser (http://genome.ucsc.edu, GoldFasta files). Loga-
rithmic scales are used for both axes, since both random DNA
(dotted line at bottom left, log interval slope of —1/2) and power-
law correlated DNA (slope less steep than —1/2) give straight
lines on such plots. “Complete” vertebrate sequences still contain
gaps, including ribosomal and heterochromatic DNA, so the plot-
ted values are approximate. The grey region indicates the interval
(15-100kb) in which most AUC data points will be found. For
clarity only the human plot is extended past this interval
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Implications of Long-range Correlations
in Isochores

The detection and characterization of long-range correla-
tions or “long memory” in sequences or time series is an
active field of research that has interested not just biolo-
gists, hydrologists, physicists, mathematicians and statis-
ticians, but also econometrists and financial modellers,
and several methods exist for estimating such correla-
tions’ characteristic parameters (see, e.g., {25] or Chap-
ter 8 of [26]). We here mention only the detection and
estimation method that is natural in the context of CsCl
gradient AUC. Long-range positive, serial autocorrela-
tions in GC that are present in DNA can be detected
by a linear decrease in the log-log plot of inter-segment
standard deviation versus segment length, with a slope
that is distinctly less steep than —1/2 over one or two
orders of magnitude (see, e.g., [25,27-29]). A slope of
—1/2 is what one would expect for a random sequence
of uncorrelated or independent nucleotides; a less steep
slope but again following a straight line is what one
would expect for a serial autocorrelation that decreases
as a power of the intervening distance d (proportional
to d~%). The closer the slope is to 0, the higher is the
long-memory parameter, i.e., the more serious is the de-
parture from a statistical scenario of independent and iden-
tically distributed (i.i.d.), or random nucleotides. In par-
ticular, no short-range (Markovian) dependence can be
assumed in such cases: the dependence is irreparably long-
range.

The fact that one cannot invoke familiar textbook sce-
narios has far-reaching implications. For one thing, the
independence assumption is a pillar on which most of tra-
ditional statistics is based. When this assumption falls,
many standard tests for large-scale DNA properties or con-
trasts become invalid, and the modified tests that are ap-
plicable (see Section 8.6 of [25] for examples) have lower
apparent statistical power, at a given length scale. Simi-
larly, traditional models used to reconstruct phylogenies
from sequences typically assume independence among nu-
cleotides.

Using only analytical ultracentrifugation in CsCl, one
can already use standard deviations of a species’ pro-
files, obtained at different molecular weights, to obtain
log-log plots such as those shown in Fig. 3, and then use
the slopes to estimate bulk long-range memory param-
eters (e.g., an estimate of the Hurst exponent H is the
slope plus 1). One can, furthermore, experimentally ob-
tain compositional fractions or Gaussian components [23].
By plotting their standard deviations individually against
molecular weight, one observes that the standard devi-
ation and long-memory parameters (non-independence)
of mammalian DNA are systematically higher for GC-
rich isochores than for GC-poor isochores, at molecular
weights up to around 70 kb. All of this can be done in prin-
ciple, and largely also in practice, without knowing any

sequences ([22,23]; see [27] for a discussion of the con-
cordance with sequence results).

One consequence of long-range dependence that is di-
rectly visible during routine sequence analyses is statis-
tical self-similarity, which holds in the “linear” range of
the log-log plot, i.e., at scales up to about 70-100 kb. In-
deed, moving-window GC scans of chromosomal regions
obtained using one window size look, statistically, very
similar to those obtained using a much smaller or much
larger window size, if one correctly resizes the vertical axis
(which one can do by consulting the standard deviation
versus window plot). Thus, it is often impossible to deduce
anything about the scale (window size/molecular weight)
by just looking at the scans.

Comparing Species
when the Molecular Weights are Different

The general features described above are common to eu-
therian mammals, but the quantitative details can be quite
different among individual species. If we had a collection
of DNA samples from different mammals, all samples hav-
ing the same molecular weight, we: would have main band
profiles with different modes, means, standard deviations
(as shown in Fig. 3) and/or asymmetries. In other words,
different mammals have different GC distributions. These
differences can be phylogenetically informative, and/or
tell us about base compositional shifts that occurred during
mammalian evolution, such as the narrowing of the profile
in a rodent lineage that led to mouse and rat.

We would often like to compare different species’
genomes by comparing their GC distributions. We may
have one DNA sample for each of the species, but then find
that those samples’ molecular weights are different. This
situation is not uncommon, since samples collected in the
wild, preserved under different conditions by different in-
vestigators, and injected into the ultracentrifuge cell can
end up with average molecular weights varying from about
10 kb (or less) to 100 kb. If we can accurately measure the
average molecular weight of each sample, for example by
pulsed-field gel electrophoresis, we can then estimate the
GC distributions and/or their standard deviations.

As mentioned above, a GC distribution of fixed-length
fragments or segments of mammalian DNA (< 100 kb)
will be narrower if the fragments are long than if they
are short. Because of this molecular weight dependence,
it can be difficult to compare profiles from two different
species if one species is represented by, say, a 70 kb sam-
ple and the other species is represented only by a 10kb
sample. Ideally, one would like to predict what a profile
would look like if the same species’ sample had instead
some other, standard molecular weight. The plots of Fig. 3,
obtained from recently sequenced genomes, show that this
is in general a difficult task. Indeed, for mammals, other
vertebrates, or even protostomes such as insects and ne-
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matodes there is no general rule that would allow us to
reliably “convert” a species’ profile obtained at 10kb to
the same species’ profile at 70 kb. Conversely we might
be tempted to shear the 70 kb down to about 10kb and
then centrifuge the smaller fragments, but Fig. 3 shows
that interspecific comparisons at 10 kb would no longer al-
low much resolution: valuable large-scale information that
can differ markedly among genomes is destroyed by such
shearing. The best we can offer, to shed some light on
the possible molecular weight dependencies of different
taxa, is a “calibration” of the plot of standard deviation
versus molecular weight: one traces the molecular weight
dependencies for species represented by several samples of
different molecular weights [21,23] or by a whole-genome
sequence.

Both the utility and the limitation of such a calibration
are seen in Fig. 3. In the molecular weight range that is of
most interest for CsCl work (= 15-100kb), it is a promis-
ing sign that the lines traced by different vertebrate species
do not cross, but fan out. In other words, if we have one
fish genome’s GC distribution for only 10kb fragments
and another fish genome’s GC distribution for only 70 kb,
both obtained via ultracentrifugation, then we can guess
(but only guess, until we have more sequence- or AUC-
derived traces of fishes as calibrating guidelines) the angle
at which the traces of Fig. 3 would pass through each of
those two data points.

The fact that zebrafish has narrower profiles than
pufferfish, at a given molecular weight > 1kb, is of in-
terest since the genomes of these two bony fishes are
comparable, and indeed the difference between their het-
erogencities has long been known from AUC (see [30]
and references therein). Similarly, the observation that the
warm-blooded vertebrates have distinctly higher GC het-
erogeneities than the cold<blooded vertebrates exemplifies
a well-documented difference of functional and evolu-
tionary significance, and several lines of reasoning point
to an explanation in terms of thermal stability ([31]; re-
viewed in [1]). The difference between the two dipteran
insects, mosquito and fly, is also interesting, since they
have diverged considerably in their genomes’ composi-
tional properties [32], during the 250 million years or so
since their lineages separated [33].

Figure 3 also shows that there is no hierarchy sepa-
rating all vertebrates from all insects or nematodes: some
large-scale genomic GC differences obviously evolved in-
dependently in fishes and insects. This example illustrates
the danger of excessively widening the taxonomic range
of one’s comparison: a homoplasy, i.e., a convergent or
apparently convergent evolution of a trait (in this case
GC heterogeneity) will mislead phylogenetic reconstruc-
tions if they are based on that trait. Zebrafish is obviously
not more related to a worm than to pufferfish: the evo-
lutionary distances over which one is trying to directly
compare GC data are too wide. To reduce the chances
of being misled, one can include the profile mean or

mode as a second trait (giving a 2D plot, if molecular
weights are similar; see [34] for an example), restrict one’s
phylogenetic range, and sample taxa densely within that
range.

Concentration Dependence
and the Approach to Equilibrium

The good agreement, after applying established correc-
tions, between CsCl absorbance profiles and genome
sequence-based histograms also indicates where theor-
etical improvements would be welcome. One remaining
unsolved problem is how heterogeneous equilibrium pro-
files change as different amounts, i.e., concentrations of
DNA are loaded. Another interesting problem would be
to describe how heterogeneous pre-equilibrium profiles
change as they approach equilibrium. A solution to the
first problem, if indeed a generally applicable solution ex-
ists, would be of much help for extracting accurate GC
distributions from AUC profiles. A solution to the second
problem might be useful in providing a rough but “real-
time” estimate of a sample’s molecular weight, without
needing to resort to separate pulsed-field gels or sedi-
mentation velocity runs, or for double-checking molecular
weight estimates obtained via these other routes (see Ap-
pendix). It would be particularly useful for detecting and
monitoring, in real time, any unexpected aggregation of
DNA into high-molecular weight clusters, for example
as a satellite band or crowded main band center is being
formed.

Not all calculations for homogeneous samples can be
easily transferred to heterogeneous samples, and indeed
the exponential concentration dependence of homoge-
neous DNA cannot be simply ported. Aggregation of DNA
is often likely to enter the picture: it narrows (instead of
broadening) a profile when DNA concentration is raised.
In fact, if only the virial effect, observed for phages, were
active, one might be tempted to try a folding (generalized
convolution) operation, in which again a Gaussian spread
function, this time with a width that increases exponen-
tially with (local) concentration, spreads a heterogeneous
genome’s GC distribution. The most flattened region of
the profile would then be the modal region near the band
center. This is not observed, and instead the modal region
is often narrower than one would expect from the cor-
responding genome sequence. It is not yet clear if such
observations are generally best explained by aggregation
of crowded DNA, or if they are almost as often caused by
other effects, or by unsequenced satellite DNA that may be
present in the profile but not in the sequence-derived GC
distribution. For a complete treatment one must probably
return to first principles.

Concerning the second problem, the approach to equi-
librium of heterogeneous DNA, one might begin by con-
sidering a simple “toy” genome model consisting of two
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well-spaced components or peaks, such as those of phages
lambda and 2C. Once the CsCl gradient is well estab-
lished, the two components’ approaches to equilibrium
will each be exponential (see Appendix). Their trapezoid-
like pre-equilibrium profiles will appear, first superim-
posed, and then gradually narrow into the two equilib-
rium peaks. It is however unlikely that this simple prob-
lem of two well-separated, narrow bands can be satis-
factorily generalized to the continuous wide band or GC
distribution of a mammal. Rather than tinkering an ap-
proximate solution from off-the-shelf pieces, it would
again seem indicated to begin afresh from first princi-
ples, where one has a firm grip on the assumptions one
is making at every step of a derivation. The calculations
of [35] treat the approach to equilibrium in the special
case where dynamic changes of the DNA/CsCl solvation
are negligible, and one possible path might begin from
there.

Conclusion and Perspectives

A raw AUC profile of DNA in a CsCl density gradient,
and its underlying GC distribution, change when a DNA
sample is substituted by a sample from the same species
but having a different molecular weight. The way in which
the profile changes can report functionally relevant, sta-
tistical properties of the genome and its genes, a fact that
renders CsCl profiles especially useful when a genome has
not been sequenced.

Base compositional information can also help in re-
constructing or confirming phylogenetic relationships
(see [34] for a GC-based study of rodents). AUC-derived
GC distributions can be phylogenetically informative, al-
though satellite DNA contributions may need to be dis-
counted: such highly repetitive DNA can band anoma-
lously and, even when it does not, its rapid changes usually
amount to noise except at the population or species levels.

Many genomes exhibiting substantial GC heterogene-
ity at the 50-100 kb level have recently been sequenced.
Such sequences have amply confirmed earlier rigorous
deductions from AUC [14,24,27,36-38] and now point
the way to refined post-processing of CsCl absorbance
profiles. Where there are subtle but unexpected differ-
ences between AUC profiles and the GC histograms from
scans of whole-genome sequences, they can indicate gaps
in the sequence or gaps in our understanding of macro-
molecules’ collective behavior in density gradients. CsCl
profiles can be simulated or produced in silico from
a genome sequence, incorporating facts and hypotheses to
account for different factors that atfect experimental pro-
files. Sequence-AUC comparisons can then be designed to
fine-tune the hypotheses.
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Appendix
Historical and Theoretical Details

Compositionally Homogeneous DNA. Almost all of the
important quantitative physico-chemical and biophysical
work on salt density gradient problems was done between
1957 and the mid-1970’s, and progress in deriving appro-
priate formulae came to an almost complete halt when
molecular cloning began.

Most early applications of CsCl density AUC in-
volved DNA samples that were homogeneous in buoy-
ant density and monodisperse in molecular weight, as
is the case for preparations of intact complete phage
DNAs (or nearly homogeneous and monodisperse, as for
some bacterial DNAs), so that most of the early theor-
etical treatments also focussed on such DNA. The stud-
ies estimated, for example, molecular weight from band
widths, i.e., from profile standard deviations, and cal-
culated how various factors relevant to a routine AUC
run would influence the position, shape and width of
a band at sedimentation equilibrium. The factors included
electric fields (DNA as a polyelectrolyte) [39], non-
ideality /solvation [40], virial effects/concentration depen-
dence [19], pressure/compressibility [41,42], methyla-
tion [43], other modifications of DNA [11], the presence
of highly repetitive DNA [18,44], and light bending [45].

Absorbance profile shapes depend primarily on the mo-
lecular weight, on the GC heterogeneity present, and on
any anomalous banding behavior that may affect some but
not the rest of the DNA. In the case of a homogeneous
sample the molecular weight M is the most obvious fac-
tor. The expected profile is then roughly Gaussian, and the
variance has the form

3

where a is a proportionality constant (see [40] for details).

Profiles’ shapes also depend on the average concentra-
tion of DNA, i.e., on the amount of DNA loaded, all other
things being equal. This concentration dependence was
quantitatively analyzed by Schmid and Hearst [19,46],
who found that the Gaussian profiles of all phages tested
had widths that increased exponentially with increasing
concentration c, i.e. they had the form

2 _
Olotal = a/M ’

B-
Ototal = v a/Me “.

“4)

This behavior is what one would expect from an unusually
strong virial effect. The widening of the profile is highly
reproducible when the same phage is analyzed (Gabriel
Macaya, personal communication describing unpublished
data). On the other hand, some phages’ profiles widen
more rapidly with increasing concentration than others,
i.e., B is species-specific.

How a homogeneous sample of macromolecules ap-
proaches its equilibrium distribution in density gradients
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has been the topic of several articles. One detailed mod-
elling effort {47] assumed some fixed functional forms
a priori in order to extend a diffusion-free solution that
had, in essence, been obtained earlier from the Lamm
equation in another context via the method of character-
istics [48]. The articles also included an elegant study for
DNA in the special case of a pre-formed gradient [49]. The
results derived in that study allow one to estimate a ho-
mogeneous sample’s molecular weight by observing the
banding of the DNA during the last hours of its approach
to equilibrium: once the CsCl gradient has been estab-
lished, the width and mean of a band’s profile approach
their equilibrium values exponentially [50]. A log-linear
plot of the remaining difference versus time then yields
a straight line, whether one is observing the standard devi-
ation or the mean. In the former case, the molecular weight
can be calculated from the straight line’s slope. The cal-
culation takes solvation (non-ideality) into account [50],
and the results for phages agree favorably with molecu-
lar weights calculated via sedimentation velocity and/or
now by whole-phage sequencing. The approach to equi-
librium in density gradients is, interestingly, the topic
also of two much more recent studies [35,51], and a so-
lution, for the limiting case of no interaction between
DNA/CsCI and water, is now included in the program
SEDFIT (http://www.analyticalultracentrifugation.com).

Compositionally Heterogeneous DNA. The conceptual
simplicity of homogeneous samples, exemplified by the
short genomes of bacteriophages, prompted some excel-
lent theoretical work. Such short genomes are, however,
rare among many of the species of current interest, and
the larger chromosomes of prokaryotes and especially
of eukaryotes are invariably broken into fragments dur-
ing routine DNA extraction. In addition, genomes of eu-
karyotes such as deuterostome or protostome animals or
angiosperm plants are characterized by marked intrage-
nomic contrasts in GC. As a result, samples of total nuclear
DNA from those genomes exhibit substantial intermolecu-
lar (inter-fragment) heterogeneity, so they are represented
by wider main bands in CsCl at equilibrium.

Indeed, the original 1957 paper on CsCl gradient
AUC [2] already showed absorbance profiles of a phage,
and of calf, mentioning that in calf “the skewness in the
resultant band indicates heterogeneity in [mean buoyant]
density”, and that such “density heterogeneity may be
compositional or structural in origin”.

A detailed discussion of heterogeneous DNA was given
by Sueoka two years later [52]. We assume here for simpli-
city that we are analyzing a sample in which none of the
DNA bands anomalously, i.e., the time-averaged position
of each of the jittering DNA molecules is where Egs. 1 and
2 predict. If some DNA does band anomalously, its GC
must be replaced by its effective GC in the following, i.e.,
by the GC to which its buoyant density would correspond;
the effective GC can even be negative in the case of long

poly-A repeats [44,53]. We also assume here that we are
near the theoretical limit of infinite dilution, so that there
are no virial or other concentration-dependent effects. The
absorbance profile of the DNA is then a convolution of the
true GC distribution, after converting to appropriate units,
and a Gaussian point spread function (i.e., a kernel, or fil-
ter) that broadens the GC distribution via diffusion. The

total variance al%l, of the band is therefore just the sum

of the variance o5 due to true GC heterogeneity, plus
the variance agiﬂ'usion caused by the Brownian motion of
molecules.

When molecular weight is constant (monodisperse
sample, fixed-length fragments or molecules), the latter
variance is inversely proportional to the molecules’ com-
mon length or molecular weight M:

)

When molecular weight is not constant (polydisperse sam-
ple, variable-length fragments or molecules), the point
spread function is in general not Gaussian. Indeed, our
point spread function corresponds simply to the ab-
sorbance profile of a sample that is homogeneous in
GC. If that sample is homogeneous but polydisperse, its
absorbance profile is the weighted superposition of the
profiles that would be obtained for each of the different
molecular weights present. Even if our sample is het-
erogeneous and polydisperse, but exhibits no correlation
between molecular weight and GC, a convolution can still
be assumed. The resultant point spread function is then
a weighted sum (or integral) of Gaussians, and a suitably
modified version of Eq. 5 holds.

The molecular weight M of a DNA sample can be de-
termined via an independent method such as sedimentation
velocity or (more recently) pulsed-field gel electrophore-
sis. If one knows the proportionality factor a in Eq. 5,
one can then quickly calculate the GC heterogeneity. The
best estimate of this factor is that given by Schmid and
Hearst [20], who included solvation (non-ideality) in their
treatment, checked their formula using several phages of
known lengths, and described its use for heterogeneous
DNA. Since a is only weakly dependent on GC, since the
GC levels of heterogeneous genomes’ fragments are usu-
ally between 30% and 70%, and since other variables such
as temperature remain standard for AUC runs, we hardly
sacrifice any accuracy by treating a as a constant. For stan-
dard deviations in units of GC% we obtain for a, at 25° and
other standard conditions, the value (44.5£0.5) kb [14],
which is at least as accurate as typical estimates of molecu-
lar weights from pulsed-field gels.

The above estimates and observations can be theoret-
ically justified only at infinite dilution. This simplifying
assumption is, however, unrealistic in practical AUC sit-
uations. AUC runs are not done at infinite dilution of the
DNA, and not even at high dilutions: maximal absorbances
(optical densities) should not be less than about 0.25. The

2 2
Olotal = 9GC + a/ M.
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estimate of @ discussed above is therefore a rough approx-
imation, which we use only because at present no more
accurate alternative is available (see below, and main text).
The roughness of the approximation can depend on the
genome of interest and/or on the part of the profile consid-
ered.

As Sueoka’s early calculations [52] showed, the CsCl
profile of calf thymus, i.e., of the bovine genome, was
wider than those of certain bacteria and phages because
of true heterogeneity among the (time-averaged) buoyant
densities of the calf’s DNA fragments, and not trivially
because of any molecular weight differences among the
samples being compared. It was not until 14 years later,
however, that the CsCl profile of the cow genome could
be quantitatively explained in terms of its genomic GC.
Indeed, its heterogeneity comes in part from the GC het-
erogeneity of single-copy DNA, but also in part from the
massive amounts (25%) of highly repetitive satellite DNA
that are present in the cow genome [16]. Such satellite
DNA can be cryptic, and can easily broaden a profile, espe-
cially when it bands anomalously. Other examples in point
are the guinea pig profile [18] and the mouse profile that is
still included in standard biology textbooks to illustrate the
concept of satellites.

In summary, at infinite dilution a solution for a homo-
geneous sample can be transferred to the case of a hetero-
geneous sample: the solution of the homogeneous problem
becomes the point spread function for the heterogeneous
problem. The convolution principle that allows this guar-
antees that the variances of the spreading and of the GC
distribution will add up to give (in units of equivalent
GC%) the total profile variance.

Deconvolving a CsCl profile might seem the most dir-
ect way to obtain or extract a GC distribution from an
absorbance profile. In view of the current resolution lim-
its of commercially available analytical ultracentrifuges,
however, it is both numerically easier and more instructive

to work in the other direction. For example, our experi-
ence has shown that a truncated exponential distribution
convolved with a Gaussian is typically a very good fitting
function for GC distributions or (with a wider Gaussian,
to accommodate diffusion) raw CsCl profiles of a mam-
mal’s total DNA. Satellites are then often visible as bumps
that locally deviate from the best fit [14,34]. Similarly,
when a genome sequence is available in its entirety (not yet
common, even when the sequence is declared “finished”),
its GC distribution can be convolved with model spread
functions and the resulting distribution can then be com-
pared with experimentally obtained CsCl profiles. Partial
sequences allow rough comparisions.

In a convolution/deconvolution problem, the spreading
or broadening must be the same at all parts of the GC distri-
bution or profile. A natural generalization of such a problem
is a corresponding folding/unfolding problem [54], where
this requirement is relaxed. In a folding model, the spread
function and its width (extent of broadening) could be al-
lowed to depend directly on the GC (in our case), and
therefore indirectly on any other variables that are un-
ambiguously specified by the GC. Folding models might
therefore be useful in some situations where convolution
models are too restrictive, although they can unfortunately
not be applied to solve two problems for heterogeneous
DNA discussed in this paper, concentration dependence and
the approach to equilibrium. In profiles of heterogeneous
DNA, aggregation and possibly other effects can counter-
act the flattening effect of concentration that is observed for
species with homogeneous DNA such as bacteriophages.
Thus, the homogeneous case cannot be generalized via
folding to yield the concentration dependence for a het-
erogeneous species such as human. Similarly, no stage in
the approach to equilibrium admits a folding model: GC-
rich and GC-poor DNA molecules are not much quicker or
slower in separating from each other than in approaching
equilibrium.
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