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Abstract
Gene prediction relies on the identification of characteristic features of coding sequences that

distinguish them from non-coding DNA. The recent large-scale sequencing of entire genomes

from higher eukaryotes, in conjunction with currently used gene prediction algorithms, has

provided an abundance of putative genes that can now be analysed for their compositional

properties. Strong, systematic differences still exist, in several species, between the

compositional properties of sets of ex novo predicted genes and genes that have been

experimentally detected and/or verified. This is particularly evident in the estimated gene set

(.45,000 genes) of the recently sequenced rice genome, where roughly half the predicted

genes are compositionally unusual and have no known orthologues in the dicot Arabidopsis. In a

few cases such differences might suggest a bias in experimental gene-finding protocols, but the

quasi-random nature of the compositionally aberrant predicted genes is a strong indication that

many, if not most, of them are false positives. It therefore appears that some important

features of coding regions have not yet been taken into account in existing gene prediction

programs. Statistical base compositional properties of curated gene data sets from vertebrates,

which we briefly review here, should therefore provide a useful benchmark for fine-tuning

probabilistic gene models and model parameters that are currently in use.

INTRODUCTION
Vertebrate genomes are characterised by

the mosaic organisation of their base

composition, at different scales.

Historically, the first indication of such

large-scale mosaicism was the

phenomenon of chromosomal (eg

Giemsa/Reverse) banding. The bands

that are obtained by standard staining

techniques are now known to correlate

with local GC level (ie with the molar

ratio of guanine + cytosine in the DNA)

and with replication timing: the dark-

staining bands have lower average GC

contents than the bands that flank

them,1,2 and replicate later than the light

bands.3

The first rigorous evidence for large-

scale compositional mosaicism came from

analytical ultracentrifugation of

mammalian and avian DNAs in density

gradients. Such experimental analyses

allowed an early demonstration of a strong

large-scale heterogeneity in the GC of

their genomes, quite apart from the

contributions of highly repetitive satellite

DNAs.4 Subsequent ultracentrifugation

analyses, performed at different molecular

weights and for different species, provided

conclusive evidence that the unique DNA

of mammalian and avian genomes is

organised into long, relatively

homogeneous chromosomal regions that

span more than 300 kb on average, but

can often extend much further5,6 (recent

discussions of the methodology are given

in Clay et al.7 and Pavlı́cek et al.8). To

emphasise the mosaic nature of these

genomes, in which GC-poorer regions

alternate with distinctly GC-richer regions

along the chromosomes, the fairly

homogeneous regions were called

isochores.9 Among the biological

properties that are now known to

correspond (in some cases sharply) with

the DNA of GC-rich isochores in
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mammals, we mention here the earlier

replication timing, the higher gene

densities, the fewer and shorter introns,

the higher concentration of the GC-rich

CpG islands, and the different and larger

chromosomal territories in interphase that

are occupied by such GC-rich DNA

(reviewed in Bernardi10 and Saccone

et al.11).

The conservation, among mammals

and birds, of many, if not most, of the

broad compositional properties that will

be discussed here, has been confirmed by

experimental studies involving many taxa.

The techniques used include

ultracentrifugation experiments in density

gradients and inter-taxon hybridisation

studies (so-called zooblots).12–14 Among

the eutherians that have been well

characterised at the genomic level, only

some myomorph rodents, including

murids, show an obvious departure from

the general compositional patterns of

other warm-blooded vertebrates. In

particular, GC contrasts among different

regions of a chromosome, and related

contrasts such as those between CpG

islands and inter-island DNA (including

their respective methylation levels), are

less pronounced in mouse, rat and other

murids than in human or chicken (see

Bernardi15 and Douady et al.16 and

references therein). Birds differ from

mammals in having even more

pronounced large-scale heterogeneity in

their GC content, and in having

microchromosomes that contain much of

their GC-richest, CpG-richest DNA (see

Andreozzi et al.17 and references therein).

COMPOSITIONAL
CORRELATIONS
INVOLVING GENES
Within the isochores of vertebrates, there

is again mosaicism of GC levels, although

at a much smaller scale, namely at the

scale of genes, exons and introns.18–22 For

example, in GC-rich isochores, the GC

levels of coding exons rise above the

background of intergenic DNA, as do the

CpG dinucleotide frequencies and CpG

observed/expected ratios.23 Within the

coding exons, the GC levels in third

codon positions (GC3) are, in turn,

typically higher than in first codon

positions (GC1), and much higher than in

second codon positions (GC2).

Conversely, genes in very GC-poor

isochores (GC , 40%) tend to contain

more, and longer, introns than those in

GC-rich isochores,24 and are GC-poor. In

such GC-poor genes, GC3 levels are

typically lower than GC levels in first and

second codon positions. Thus GC3 is, at

least statistically, a sensitive monitor of the

mean GC of 10–100 kb regions in which

the genes are embedded, being

substantially higher than the ambient

intergenic GC in GC-rich isochores, yet

similar to or lower than this intergenic

GC in GC-poor isochores. Whereas

second positions are strongly constrained

by the encoded amino acids, third codon

positions are largely free of such

constraints and generally reflect the base

composition of the isochore in which

they are embedded. Thus, a steep, yet

strong, correlation holds between the

GC3 levels of genes and the GC level of

the DNA surrounding the genes.

Significant correlations exist also

among the other characteristic GC levels

within or surrounding genes (three codon

positions, exons/coding sequence (CDS),

introns, 59 flanks, 39 flanks). This fact

corresponds to the observation that the

corresponding bivariate distributions often

have an approximately linear shape and

are well characterised by their major axis

(also called orthogonal regression line, or

principal axis). In passing, it should be

mentioned that traditional linear

regression lines (such as are used to

describe unilateral dependence

relationships) do not provide a satisfactory

characterisation, since they do not follow

the points when scatterplots are

characterised by steep slopes, but instead

systematically slice the scatterplots at a

lower angle.21,25–27 In addition, such

traditional regression lines are not

invariant when ‘dependent’ and

‘independent’ variables are swapped.

The major axis equations, which are

Codon positions

Correlations

Coding DNA
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equations that characterise a genome,28

have been obtained and studied for

human20,21,29 and chicken,22 and some

examples are listed in Table 1.

Relationships between codon positions

require only cDNA (mRNA) sequences,

and could therefore be obtained for a

wide range of eukaryotic and prokaryotic

species, either intra- and/or

intergenomically.19,29,35–38 The practical

utility of these relations comes from their

unusually wide conservation, especially

for the relation between the third and

second codon positions. Since the line

that characterises this latter relation is far

from the diagonal line that would be

expected for random intergenic sequences

(GC2 ¼ GC3), it can be used to check the

quality or plausibility of gene predictions

in previously uncharacterised species.

Table 1 lists the equation linking GC2 and

GC3 for human, chicken and Escherichia

coli, illustrating good conservation despite

a huge taxonomic distance, and despite a

relatively narrow distribution of GC3

values in E. coli.

As a comparison, the equation is listed

also for a sample of apparently ex novo or

ab initio predicted ‘human’ genes. Such

results for predicted human genes are

sometimes quite different from those for

true human, chicken or E. coli genes.

Since human and E. coli have long been

represented by large databases of

experimentally determined or verified

coding sequences (cDNA), and since the

compositional properties of these growing

databases have remained essentially the

same for almost a decade (as will be

illustrated below), the non-redundant

sequences used in Table 1 should be a

faithful representation of true protein-

coding genes. For predicted genes, on the

other hand, the steeper orthogonal

regression line and higher correlation

coefficient (R) tend toward the

expectation for randomly chosen

intergenic sequences. Indeed, for

intergenic DNA one would expect the

slope to be essentially 1.

The relation between GC3 and the GC

of the DNA surrounding the genes has

GC2 and GC3

Table 1: Equations of the human and chicken genomes, describing linear relations (major axis, ie orthogonal regression)
between base compositions of characteristic parts of genes and/or flanking (intergenic) DNA

x y Retrieval
date

Species Equation R Method Reference

GCflanking GC3 1995 Human y ¼ 2.92x � 74.3 n.a.
(0.9995)�

Experimental/sequences� Zoubak et al.
30

1999 Human y ¼ 4.09x � 120.37 0.62 CDS in large (.50 kb) GenBank
contigs

Jabbari and Bernardi
31

2002 Human y ¼ 3.06x � 79.4 0.64 RefSeq (refGene) + draft genome
sequence†

Pavlicek et al., in
preparation

1998 Chicken y ¼ 2.64x � 64 0.78 Genes with sequenced flanking
DNA

Musto et al.
22

GC1 þ 2 GC3 1995 Human y ¼ 5.64x � 215.3 0.42 4,270 non-redundant GenBank
CDS sequences

Clay et al.
21

GC3 GC2 2002 Human x ¼ 5.846y � 187.7 0.32 10,218 non-redundant CDS
sequences (RefSeq)

Pruitt and Maglott
32

1998 Chicken x ¼ 5.98y � 185 0.36 1,037 non-redundant GenBank
CDS sequences

Musto et al.
22

1997 E. coli x ¼ 5.225y � 156.6 0.23 4,286 CDS sequences Lawrence and
Ochman

33

2002 ‘Human’ y ¼ 1.95x � 33.2 0.62 588 ‘not_experimental’ GenBank
sequences

GenBank (28 November
2002)

GCflanking GCCDS 2002 Human y ¼ 1.27x � 4.76 0.65 RefSeq (refGene) + draft genome
sequence†{

Pavlı́cek et al., in
preparation

GCintron GCCDS 1995 Human y ¼ 0.83x + 14.2 0.78 Genes with sequenced introns Clay et al.
21

�Indirect calculation, by matching four Gaussian components of x and y distributions (x: experimental CsCl profile; y: N ¼ 4,270); confirmed by direct
regression for smaller sets of genes with available flanking sequences or hybridisation/ultracentrifugation data, R � 0.7–0.8.
†Flanking regions of 100 kb were used after removing repetitive DNA (N ¼ 14,652 coding sequences).

2, 34

{Similar results were found earlier for fewer sequences/fragments.
21
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also proved very useful. Already a decade

ago, this linear relation was employed to

estimate the gene density distribution in

the human genome.27,30 The equation,

given in Table 1, was applied to the

distribution of genes’ GC3 levels, in order

to obtain the distribution of GC levels of

the DNA that is expected to surround the

genes. The distribution of the GC levels

of long DNA fragments was obtained by

ultracentrifugation in caesium chloride

density gradients, and a simple division of

the two distributions yielded the gene

density curve. This curve rises steeply: in

the GC-poor regions, DNA is abundant

and genes are scarce, whereas in the GC-

rich regions there is little DNA, so that

genes are crowded. In the GC-richest

regions, genes are found at densities that

are 15–20 times higher than in the GC-

poorest regions. This ratio was recently

confirmed at the sequence level, using the

draft genome sequence2 (see Bernardi39

for a discussion).

Other linear relationships that can be

used to recognise or verify genes and their

exon– intron structures include those that

exist between the GC levels of coding

sequences (GCCDS) or introns (GCintron)

and the surrounding DNA (GCflanking).

Interestingly, CpG island genes (in which

CpGs, and therefore GC levels, are

elevated at the 59 or 39 end of the gene)

do not appear to strongly influence the

lines describing these relationships, at least

in human.21,30

The observed linearities often extend

over wide ranges, which span most of the

relevant GC values that are found in

protein-coding sequences. This fact is

noteworthy, because such linear

relationships will obviously no longer

hold at 0 per cent GC and 100 per cent

GC (excepting the trivial identity y ¼ x).

Figure 1 shows the scatterplots of GC2

and GC3 for coding sequences from

human (left; 10,218 sequences) and E. coli

(right; 4,286 sequences), corresponding to

data sets listed in Table 1. The orthogonal

regression lines that characterise them are

shown, together with the main diagonal

of slope 1 (GC2 ¼ GC3) as a comparison.

Gene distribution

Figure 1: Scatterplots of GC2 versus GC3 for non-redundant, representative collections of
coding sequences for human (left, 10,218 non-redundant RefSeq32 sequences) and E. coli (right,
4,286 sequences

33
). In each scatterplot, the main diagonal and orthogonal regression line

(major axis; equations listed in Table 1) are shown
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In GC-rich coding DNA, a striking

difference is seen between the GC levels

in different codon positions.

COMPOSITIONAL
DISTRIBUTIONS
Bivariate frequency distributions (ie

probability density functions), such as the

joint distribution of GC2 and GC3, can be

represented in several ways. One way is to

show a scatterplot, and the major axis that

best characterises it, as in Figure 1. When

there are many sequences, important

information is however obscured,

especially in the dense region around the

major axis, and even the shape of the

modal crest cannot be discerned. Contour

plots or three-dimensional plots can reveal

such information (Clay et al.21 show an

example). Similarly, lateral views or,

alternatively, thin transects of the 3D

landscape can be easily obtained and

plotted: they are simply one-dimensional

histograms. A histogram can, for example,

be plotted for a thin transect (slice) along

the major axis or modal crest of such a

landscape, and the views from (or

projections onto) the two axes correspond

to the histograms of the variables (as is

illustrated by Figure 5 in Rijsdijk and

Sham40).

The distribution of genic GC2 and

GC3 levels subtends only a small angle

with the GC3 axis. This fact has two

simple consequences. The first

consequence is that departures from the

expected clustering along the major axis

are well captured by GC2 histograms. The

second consequence is that the extent to

which the genes spread out along the

major axis is well captured by GC3

histograms. Both of these consequences

can be used to recognise sets of anomalous

genes, which may represent incorrect

predictions.

Figure 2 shows a scatterplot of GC2

and GC3 levels for the predicted gene set

of chromosome 1 in rice, according to a

very recent analysis by Sasaki et al.41 As a

guide, two lines are shown: the main

diagonal x ¼ y, and the line x ¼ 6y � 2

(ie GC3 ¼ 6GC2 � 200 per cent), which

is close to the major axis in other species

(see Table 1). It can be seen that, although

many of the genes follow the widely

conserved major axis for the relation

between GC2 and GC3, a large number

of genes depart from it and follow closely

the main diagonal, as would be expected

for incorrectly predicted genes that are in

fact intergenic sequences.

Figure 2 also shows, in projection along

the GC2 axis, the GC3 distribution for a

different predicted gene set of 53,398

sequences from the entire genome of the

indica subspecies of rice obtained by

Yu et al.42 It is shown as a sum of two

components: the distribution for genes

that have homologues in Arabidopsis (a

distribution which one would expect if

the major axis is conserved in rice), and

the distribution for predicted genes that

have no homologue in Arabidopsis. Many

of these latter sequences have,

furthermore, no homologous sequences,

from any species, in currently accessible

databases.42 Such sequences are seen to

have a much wider GC2 distribution,

extending effortlessly up to high GC2

levels that are found only very rarely in

other organisms.

Although two different sets of rice

sequences (histogram and scatterplot) are

shown in Figure 2, both of them

apparently used a similar approach

(hidden Markov models) and similar

training sets, and both of them show

similar compositional anomalies for a large

proportion of the predicted genes. In fact,

as both Yu et al.42 and Sasaki et al.41 have

pointed out, over 50 per cent of the

sequences in their predicted gene sets

(50.6 per cent in the first set, 53.2 per

cent in the second set) have apparently no

obvious homologue in Arabidopsis.

Possible reasons for this are discussed

below.

It has been suggested that the

compositionally anomalous genes

observed in rice may be a characteristic of

some cereal plants that is not shared by

other well-characterised taxa, including

other angiosperms such as the dicot

Arabidopsis thaliana.42 Such a departure

Anomalous genes

Rice genome
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from widely conserved compositional

features (such as the one illustrated in

Figure 1) would, in all likelihood, require

cereal plants to have undergone a massive

change in elementary genomic processes

such as transcription, transcriptional

regulation, or translation since the

monocot–dicot divergence. There are no

known independent findings that support

such a hypothesis. It is possible, therefore,

that many, if not most, of the obviously

aberrant sequences in Figure 2 are simply

incorrectly predicted as coding DNA, and

are in fact non-coding sequences.43

Figure 3 shows GC3 distributions that

can be used for highlighting potentially

erroneous gene predictions. Whereas the

GC2 distributions of ‘false positive’

sequences will tend to be wider and/or

GC2-richer than confirmed or correctly

Gene predictions

Figure 2: Scatterplot of GC2 versus GC3 for a predicted set of protein-coding sequences of rice chromosome 1 obtained
by Sasaki et al.41 The main diagonal (which also characterises randomly chosen DNA) and the expected major axis
(approximate; see text) are shown. Along the GC2 axis on the right, two corresponding histograms of GC2 are shown, for
the predicted set of 53,398 rice coding sequences obtained by Yu et al.:42 those that have homologous genes in Arabidopsis
thaliana (black histogram), and those that do not (grey histogram). Bin size is 0.1 per cent GC2. A control histogram is also
shown for a hypothetical set of sequences having the same lengths but a uniform GC2 distribution, in order to highlight the
inevitable peaks. For example, if the 1,001 possible GC2 values (,100 per cent) of a 1001 bp sequence are distributed in
1,000 bins, one of the bins will always contain two values, ie an elevated frequency. More generally, the expected frequency
in the ith of b equal bins dividing the range 0 < x , 1 (ie 0% < x , 100%) will be the sum, over all lengths 1, of the terms
[f( l)= l]1ffloor(il=b) � ceiling[(i � 1) l=b] þ ril,bg where f( l) denotes the number of sequences that have length l. Here,
floor (ceiling) denotes the highest (lowest) integer not higher (lower) than the expression enclosed in the parentheses, and
the ‘rest indicator’ ril,b is 1 unless il divides b exactly, in which case it is 0
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recognised genes, their GC3 distributions

will tend to be narrower, at least in warm-

blooded vertebrates.

In Figure 3, it can be seen that the GC3

distribution of available curated sequences

of human genes has remained essentially

unchanged during the past decade

(symbols connected by black lines), in

spite of the increasing number of

sequences. Indeed, a very similar

histogram of non-redundant sequenced

genes was found 12 years ago.27 The

shape and the width of the human GC3

distribution of confirmed genes can,

therefore, be relied upon as robust.

Ex novo (ab initio) predicted gene sets

still often depart from this established

GC3 distribution of human genes. The

shapes of such gene sets’ GC3 histograms

approach that of the GC distribution of

bulk DNA, which is narrower and has a

mode around 40 per cent GC.

Although it cannot be ruled out that all

experimental gene-finding procedures so

far have been highly biased, ie that we are

on the verge of discovering a new class of

abundant genes that systematically eluded

detection procedures for over a decade,

we consider that high levels of

contamination by non-coding DNA is a

simpler, and quite reasonable, explanation

for such discrepancies.

METHODOLOGICAL BLIND
SPOTS IN MACHINE
LEARNING AND THE
‘SNOWBALL EFFECT’
Machine learning has been used in a

variety of contexts during the past decade.

An early example was the training of

neural networks that learned to

distinguish undersea mines from benign

rocks, on the basis of their sonar echo

patterns (discussed in Churchland44).

Machine learning is also used, to differing

extents, in predicting genes in DNA

contigs that are produced by bulk

sequencing projects. Probabilistic hidden

Markov models, in which the parameters

need to be fitted from information in a

‘training’ or ‘learning’ set, play a role in

several gene prediction programs now

employed in whole-genome sequencing

and annotation projects, such as

GENSCAN,45 FGenesh46 or

RiceHMM.47 Currently used gene

prediction programs involve models in

which only parameters with an obvious

biological meaning need to be fitted and

their role is clearly defined from the

outset. This structure gives the models a

distinct advantage over more abstract

models: the results obtained after a fitting

or ‘learning’ stage can often be formulated

in traditional terms as easily interpreted

if-then-else rules (or ‘sentences or

propositions, expressible in the first-order

predicate calculus’44). A characteristic of

the machine learning framework persists,

however: the need for a learning set or

‘training set’ consisting of bona fide coding

sequences, such as can be obtained by

checking the laboratory evidence for each

gene in the set (as was done, for example,

in Salzberg et al.48).

The sensitivity of machine learning

protocols to contaminated training sets is

well recognised. Yet present gene

prediction programs are often trained on

Genome annotation

Training sets

Figure 3: Histograms of GC levels of third codon positions (GC3) in
confirmed human coding sequences, retrieved from curated sequence
databases over the past eight years (symbols connected by black lines;
N ¼ 4,270, 10,218 and 14,652 for the filled squares, filled circles and
open circles, respectively), and, narrower histograms were found for ab
initio predicted sequence sets. The confirmed GC3 histograms are similar
to each other and to earlier histograms.27 Sources are given in Table 1.
Bin size is 2.5 per cent GC3, and histograms are normalised to 100
per cent.
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data sets that partly contain, in turn,

sequences that were previously classified

as coding by other prediction programs

(cf. the discussion in Yu et al.42).

Alternatively, they may give higher scores

when a candidate gene is detected by

another prediction program.47 Such

iterative training or lateral reinforcements

could lead to a fatal ‘snowball effect’, in

which incorrectly predicted genes could

occupy an increasingly large proportion of

the total putative gene set at successive

steps of the iteration. One might expect

such an effect if the recognised features

are frequent in the genome’s non-coding

DNA.

Learning protocols, used together with

unbiased sets of bona fide coding

sequences, can be a powerful aid when

one is predicting genes. Surprises can

occur, however, when the original

training set of examples is small (as in the

case of rice, where it was one or two

orders of magnitude smaller than for

human), or when two or more taxa with

different compositional organisation are

used during the tuning of parameters or

models. In some cases, simply raising the

stringency can eliminate a fair number of

compositionally aberrant sequences that

are likely to be false positives (see eg

Jabbari and Bernardi31). In other cases, it

may be necessary to try to understand in

biological terms how the models’

parameters are being learned, where the

algorithm may have become trapped by

artefacts or intergenomic differences, and

how one might subsequently improve the

models. As we have illustrated here,

compositional approaches could be useful

in such analyses.

Finally, it should be mentioned that

compositional approaches can be useful

also for visualising, comparing and

checking draft genome assemblies (contig

order and orientation). Colour-coded

moving window plots,8,49 with a standard

coding scheme and appropriate scales (eg

colour changes every 2.5 or 5 per cent

GC for a window size of 100 kb), can

give a concise overview of a

chromosomal sequence, including its

gaps. The coloured images of the

compositional landmarks (GC-rich and

GC-poor isochores) are easy to

remember, so that disparities between two

or more assemblies of a vertebrate

chromosome can be quickly detected. In

addition, such GC or isochore maps

permit comparisons with studies from

fluorescent in situ hybridisation

(FISH)50,51 (see also BACRC52). FISH

experiments can provide independent

compositional classification of the bands,

and sequence assemblies could then be

checked for consistency with the

expected mosaic of GC-rich and GC-

poor chromosomal bands. Long

duplicated regions can confound some

sequence assembly protocols (reviewed in

Eichler53), and some candidates for such

duplications could be revealed by the

compositional studies. GC plots, at an

appropriate scale, could therefore

complement the usual criss-cross plots

that connect orthologous regions of two

species’ chromosomes, or (as in Hattori

and Taylor54) of two draft assemblies of a

chromosome.
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