and spectroelectrometric methods. The major components were pelargonic 3 : 5-dicosenoic acid with coffee
and 3 : 5-dicosenoic acid with coffee. The 3 : 5-dicosenoic acid with coffee. The concentration of the
isolated 3 : 5-dicosenoic acid with coffee. The concentration of the substances in these tissues were
determined spectrophotometrically in methanol containing
and 1 per cent hydrobromic acid, and the results (Table I) were
expressed as mg of pelargonic 3 : 5-dicosenoic acid using a
molecular extinction coefficient of 13.300 at 268 m\(\text{nu}\).

Table I. Effect of sulfur vaporization of 2,000 ppm sulfur dioxide on

<table>
<thead>
<tr>
<th>Substance</th>
<th>Control</th>
<th>Sulfur</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation</td>
<td>100</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Incubation</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Incubation</td>
<td>100</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Incubation</td>
<td>100</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Incubation</td>
<td>100</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Incubation</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

* Applied at the equivalent volume of 40 mg per cm².

Epicuticular applications of salicylic acid, 2DCB, and TCA were all effective in reducing synthesis of

The reduction in the anthocyanins was directly proportional to the concentration of the herbicide

To study the influence of various amounts of pelargonic acid on the synthesis of 3 : 5-dicosenoic acid,

The growing point was killed and severe foliar

2DCB and TCA. The embryonic axes became decurrent and flowers failed to expand. Lateral flower buds

The results of foliar sprays of Daboueg' 2DCB, and TCA were all effective in reducing synthesis of

The reduction in the anthocyanins was directly proportional to the concentration of the herbicide

The growing point was killed and severe foliar

Foliar applications of applications of salicylic acid, 2DCB, and TCA were all effective in reducing synthesis of

The reduction in the anthocyanins was directly proportional to the concentration of the herbicide

To study the influence of various amounts of pelargonic acid on the synthesis of 3 : 5-dicosenoic acid,

The growing point was killed and severe foliar

2DCB and TCA. The embryonic axes became decurrent and flowers failed to expand. Lateral flower buds

The results of foliar sprays of Daboueg' 2DCB, and TCA were all effective in reducing synthesis of

The reduction in the anthocyanins was directly proportional to the concentration of the herbicide

To study the influence of various amounts of pelargonic acid on the synthesis of 3 : 5-dicosenoic acid,

The growing point was killed and severe foliar

2DCB and TCA. The embryonic axes became decurrent and flowers failed to expand. Lateral flower buds

The results of foliar sprays of Daboueg' 2DCB, and TCA were all effective in reducing synthesis of

The reduction in the anthocyanins was directly proportional to the concentration of the herbicide

To study the influence of various amounts of pelargonic acid on the synthesis of 3 : 5-dicosenoic acid,
Changes in Rat Plasma and Serum Calcium during Storage

Flow rate to conduct a critical field experiment is
necessary to determine how components of the
physiological blood, serum and plasma, would
be most suitable for accurate and reproducible
calcium analysis data.

Serum and plasma calcium data were somewhat confirmed
as shown by the change of "normal range" reported by
several authors1 and by the extensive number of
practical procedures for the estimation of serum and plasma calcium. In this laboratory, most of
calibrations were found to be ca. 7.0. The "normal range" data were obtained from a high
number of data for example, calcium-bone values, and is not
restricted to the use of blood plasma.

Changes in Plasma-Bone and Serum calcium were studied for this experiment.
Whole blood was obtained by cardiac puncture under
anesthesia. Sheep serum was used when plasma was
needed. The effect of storage of plasma and of serum
at 6°C and -20°C was investigated. All determinations
were made by the same technique and the same operator.
Each group of samples was divided into four parts:
(a) base line data, based on a fresh specimen of blood, and
(b) data on specimens stored at 1, 2, and 3 months.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Fresh sample</td>
</tr>
<tr>
<td>1 month</td>
</tr>
<tr>
<td>2 months</td>
</tr>
<tr>
<td>3 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>in percentage</th>
<th>number of individual sample</th>
</tr>
</thead>
</table>

The results of the Table 1 analysis of plasma calcium
found in the frozen state at -20°C demonstrated a
significant drop in the calcium level from the results on
the fresh specimen. This did not occur in the serum kept
frozen. The results of plasma calcium determinations
in the fresh and frozen plasma samples showed a
change in the serum level from the results on
the fresh specimen. As before, an unadjusted point
of the plasma level, determined after three months showed
a decrease in calcium from the initial figure.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Calcium</td>
</tr>
<tr>
<td>Fresh sample</td>
</tr>
<tr>
<td>1 month</td>
</tr>
<tr>
<td>2 months</td>
</tr>
<tr>
<td>3 months</td>
</tr>
</tbody>
</table>

* Number in percentage of individual sample

The results indicate that calcium determinations of
total plasma which has been quick-frozen or kept at -7°C for
1 month or more are not reproducible by the Munsell
technique. However, the authors found that plasma that had been
frozen for 3 months could be analyzed with the Munsell
technique. However, the authors found that plasma that had been
frozen for 3 months could be analyzed with the Munsell
technique.